Involvement of the glucose enzymes II of the sugar phosphotransferase system in the regulation of adenylate cyclase by glucose in Escherichia coli.
نویسندگان
چکیده
The nature of the interaction of glucose with toluene-treated cells of Escherichia coli leading to inhibition of adenylate cyclase was examined by the use of analogues. Those analogues with variations of the substituents about carbon atoms 1 or 2 (e.g. alpha-methylglucoside or 2-deoxyglucose) are inhibitory, and they are also substrates of the phosphoenolpyruvate-dependent sugar phosphotransferase system. Analogues with changes in other parts of the molecule (e.g. 3-O-methylglucose or galactose), L-glucose and several disaccharides and pentoses, do not inhibit adenylate cyclase and are not substrates of the phosphotransferase system. This correlation suggests some functional relationship between the adenylate cyclase and phosphotransferase systems. Further studies were done with mutants defective in glucose enzymes II of the phosphotransferase system (designated GPT and MPT); these two activities are measured by phosphorylation of alpha-methyl-glucoside and 2-deoxyglucose, respectively. The wild-type parent phosphorylates both analogues, and both inhibit adenylate cyclase. In the GPT- mutant, alpha-methylglucoside does not inhibit adenylate cyclase and is not phosphorylated, while 2-deoxyglucose is inhibitory and phosphorylated. In the GPT- MPT- double mutant, adenylate cyclase activity is present, but neither alpha-methylglucoside nor 2-deoxyglucose inhibits adenylate cyclase, and neither sugar is phosphorylated. These studies demonstrate that glucose inhibition of adenylate cyclase in toluene-treated cells requires an interaction of this sugar with either the GPT or mpt enzyme II of the phosphotransferase system.
منابع مشابه
Regulation of carbohydrate uptake and adenylate cyclase activity mediated by the enzymes II of the phosphoenolpyruvate: sugar phosphotransferase system in Escherichia coli.
The uptake of various carbohydrates and the synthesis of adenosine 3':5'-monophosphate (cyclic AMP) are subject to inhibition by sugar substrates of the phosphoenolpyruvate:sugar phosphotransferase system in Escherichia coli. The induced synthesis of the sugar-specific components of the phosphotransferase system was studied and correlated with the induction of regulatory interactions controllin...
متن کاملCoordinate regulation of adenylate cyclase and carbohydrate permeases by the phosphoenolpyruvate:sugar phosphotransferase system in Salmonella typhimurium.
Adenylate cyclase (EC 4.6.1.1) and several carbohydrate permeases are inhibited by D-glucose and other substrates of the phosphoenolpyruvate:sugar phosphotransferase system. These activities are coordinately altered by sugar substrates of the phosphotransferase system in a variety of bacterial strains which contain differing cellular levels of the protein components of the phosphotransferase sy...
متن کاملEscherichia coli adenylate cyclase complex: regulation by the proton electrochemical gradient.
Sugars such as glucose are transported into Escherichia coli by a coupled phosphorylation mechanism (the phosphoenolpyruvate:sugar phosphotransferase system, PTS). Transport of sugars through the PTS results in inhibition of adenylate cyclase [ATP pyrophosphate-lyase (cyclizing), EC 4.6.1.1] activity by a mechanism involving a change in the state of phosphorylation of PTS proteins. Other sugars...
متن کاملCharacterization of Escherichia coli adenylate cyclase mutants with modified regulation.
In Escherichia coli there is a large increase of cAMP synthesis in crp strains, which are deficient in the catabolite gene activator protein. In this work it was shown that this increase in cAMP synthesis does not occur in crp crr strains, deficient in both the catabolite gene activator protein and enzymeIII-glucose, a component of the phosphotransferase system. It was also shown that the other...
متن کاملThe Escherichia coli adenylate cyclase complex. Stimulation by potassium and phosphate.
In Escherichia coli, adenylate cyclase activity in toluene-treated cells can be inhibited by glucose while the activity in a broken cell preparation cannot. Adenylate cyclase activity in the permeabilized but not in broken cells is stimulated somewhat specifically and additively by potassium and phosphate. Kinetic studies show sigmoid substrate-velocity curves for the toluene-treated cells but ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of biological chemistry
دوره 251 8 شماره
صفحات -
تاریخ انتشار 1976